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The basic idea behind this research program is that energetic materials are 
excited electronically (So --+ Sm) upon the shock, spark, plasma, laser, etc. ignition 
event, and that these excited electronic states are the initiators of the decomposition 
process in which an energetic molecule releases its energy. The initial step in this 
process releases small radical molecules, such as NO, N2, NH3, etc., and this process 
occurs rapidly, on the order of 100 fs. The mechanisms for this release of energy 
involve radiationless and diabatic (non-adiabatic) electronic state interactions and 
transition involving conical intersections between potential energy surfaces. Thus a 
chain of events occurs, such as Sm --+ Sm-l --+ .•• --+ So --+ fragments: little 

rotational energy is imprinted to the fragments. The difference between an 
energetic and a model, non-energetic species (e.g., RDX vs DMNA, tetrazine vs ACTO, 
DAA TO and others) can be understood based on Sm (model) vs So (energetic) 
molecular decomposition, and the internal excitation (especially rotational) of the 
initial products of decomposition. One can understand energetic materials and how 
to structure them based on the behavior of their adiabatic potential energy surfaces 
and their mutual interactions. 

The fundamental goals of the program are to understand the detailed 
molecular mechanisms for decomposition of energetic materials (that is, the release 
of their stored energy), and to apply this knowledge to the creation and synthesis 
of improved and new energetic species. Achieving these goals will enable the 
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production of new specific systems for better and more stable fuels, explosives, and 
mobile energy sources. 

The specific systems we have studied over the grant period are given below, 
with some detail of particular results. 

1.Decomposition oftetrazine-N-oxide based high nitrogen content energetic 
materials from excited electronic states 

Unimolecular excited electronic state decomposition of novel high nitrogen content 
energetic molecules, such as 3,3'-azobis(6-amino-1,2,4,5-tetrazine)-mixed N-oxides 
(DAA T03.5), 3-amino-6-chloro-1,2,4,5-tetrazine-2,4-dioxide (ACTO), and 3,6-
diamino-1,2,4,5-tetrazine1,4-dioxde (DATO), is investigated. Although these 
molecules are based on N -oxides of a tetrazine aromatic heterocyclic ring, their 
decomposition behavior distinctly differs from that of bare tetrazine, in which Nz 
and HCN are produced as decomposition products through a concerted dissociation 
mechanism. NO is observed to be an initial decomposition product from all 
tetrazine-N-oxide based molecules following their excitation to low lying excited 
electronic states. The NO product from DAAT03.5 and ACTO is rotationally cold (20 
K) and vibrationally hot (1200 K), while the NO product from DATO is rotationally 
hot (50 K) and vibrationally cold [only the (O-O)vibronic transition of NO is 
observed]. DAAT03.5 and ACTO primarily differ from DATO with regard to molecular 
structure, by the relative position of oxygen atom attachment to the tetrazine ring. 
Therefore, the relative position of oxygen in tetrazine-N-oxides is proposed to play 
an important role in their energetic behavior. NzO is ruled out as an intermediate 
precursor of the NO product observed from all three molecules. Theoretical 
calculations at CASMP2/CASSCF level of theory predict a ring contraction 
mechanism for generation of the initial NO product from these molecules. The ring 
contraction occurs through a (S1 /SO)CI conical intersection. 

2. Decomposition of a Model Nitramine Energetic Material: Dimethylnitramine 

Decomposition of dimethylnitramine (DMNA, (CH3)2NN02) has been studied 
extensively over the past decades. Although several different mechanisms have been 
proposed for the initial decomposition of DMNA, the dominant decomposition 
channel is still far from fully understood. In this effort, nanosecond laser, energy 
resolved spectroscopy and complete active space self-consistent field (CASSCF) 
calculations are employed. The parent DMNA molecule is electronically excited 
using two different UV excitation wavelengths, 226 and 193 nm, to initiate the 
decomposition process. The NO molecule is observed as a major decomposition 
product with relatively hot (120 K) rotational and cold vibrational distributions by 
both time-of-flight mass spectrometry and laser induced fluorescence spectroscopy. 
On the basis of the experimental observations, a nitro-nitrite isomerization 
mechanism is predicted to be the major channel of decomposition of DMNA in the 
excited electronic state with a minor contribution from the HONO elimination 
mechanism. The branching ratio between nitro-nitrite isomerization and HONO 
elimination channels is estimated to be approximately 1:0.04. CASSCF calculations 
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show that surface crossing (conical intersection) between upper and lower 
electronic states along the nitro-nitrite isomerization reaction coordinate play an 
important role in the overall decomposition of DMNA. Presence of such a (S2jSl)CI 
conical intersection in the nitro-nitrite isomerization reaction coordinate provides a 
direct nonadiabatic decomposition pathway from the Franck-Condon point of the S2 
surface, which is experimentally accessed by 226 nm photo excitation. This excited 
state isomerization takes place through a loose geometry for which the N02 moiety 
interacts with the (CH3)zN moiety from a long distance (-2.8 A); however, in the 
ground electronic state, a similar (SljSO)CI conical intersection in this nitro-nitrite 
isomerization reaction coordinate hinders the isomerization exit channel, rendering 
N02 elimination as the major thermal decomposition channel of DMNA. 

3. Decomposition offurazan based energetic materials: 3,3'-diamino-4,4'
azoxyfurazan and its model systems, diaminofurazan and furazan 

These are the first experimental and theoretical studies of gas phase excited 
electronic state decomposition of a furazan based, high nitrogen content energetic 
material, 3,3'-diamino""4,4'-azoxyfurazan (DAAF), and its model systems, 
diaminofurazan (DAF) and furazan (C2H2N20). The NO molecule is observed as an 
initial decomposition product from DAAF and its model systems at three UV 
excitation wavelengths (226, 236, and 248 nm) with a pulse duration of 8 ns. A 
unique excitation wavelength independent dissociation channel is observed for 
DAAF, which generates the NO product with a rotationally cold (20 K)and a 
vibrationally hot (1265 K) distribution. On the contrary, excitation wavelength 
dependent dissociation channels are observed for the model systems, which 
generate the NO product with both rotationally cold and hot distributions 
depending on the excitation wavelengths. Potential energy surface calculations at 
the CASSCF level of theory illustrate. That two conical intersections between the 
excited and ground electronic states are involved in two different excitation 
wavelength dependent dissociation channels for the model systems. Femtosecond 
pump-probe experiments at 226 nm reveal that the NO molecule is still the main 
observed decomposition product from the materials of interest and that the 
formation dynamics of the NO product is faster than 180 fs. 

4.Ultrafast dissociation dynamics of excited electronic state HMX and RDX 
via femtosecond laser pump-probe techniques 

Femtosecond laser pump-probe techniques are employed to investigate the 
mechanisms and dynamics of the photodissociation of HMX and RDX from their 
excited electronic states at three wavelengths (230 nm, 228 nm, and 226 nm). The 
only observed product is the NO molecule. Parent HMX and RDX ions are not 
observed. The NO molecule has a resonant A2 L- x 2 IT (0,0) transition at 226 nm 
and off-resonance two-photon absorption at 228 nm and 230 nm. Pump-probe 
transients of the NO product at both off-resonance and resonance absorption 
wavelengths indicate the decomposition dynamics of HMX and RDX falls into the 
timescale of our laser pulse duration (180 fs). 
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5.Decomposition of s-tetrazine and its energetic derivatives 

Excited electronic state decomposition of s-tetrazine and its energetic derivatives, 
such as 3-amino-6-chloro-1, 2, 4, S-tetrazine-2,4-dioxide (ACTO), and 3,3' '-azobis 
(6-amino-1,2,4,S-tetrazine)-mixed N-oxides (DAAT03.s), is investigated through 
laser excitation and resonance enhanced multi photon ionization (REM PI) 
techniques. As a concerted triple dissociation product from excited state 
decomposition of s-tetrazine, Nz molecule is detected with a cold rotational 
distribution (20 K) via its two photon resonance absorption transitions [a" 1I:g+ (v 
, = 0) +-- X lI:g+ (v" = 0)] at 202 nm. Similar concerted triple dissociation product N20 
is not observed from excited state decomposition of ACTO and DAA T03.s; instead, 
NO molecule is observed as an initial decomposition product from these two 
derivatives. The NO products from ACTO and DAAT03.s exhibit similar cold 
rotational (20 K) and hot vibrational (1200 K) distributions. NzO is ruled out as an 
intermediate precursor of the NO product observed from these two s-tetrazine 
derivatives. Theoretical calculation at the CASMP2jCASSCF level of theory predicts a 
concerted triple dissociation mechanism for the Nz product from s-tetrazine, and a 
ring contraction mechanism for the NO product from the energetic s-tetrazine 
derivatives. The substituents on the tetrazine ring change the characteristics of the 
potential energy surfaces of the derivatives; this leads to a completely different 
decomposition pathway from s-tetrazine itself. Moreover, as an apparently potential 
decomposition product from high nitrogen content energetic materials, the Nz 
molecule is ruled out as an initial product from excited state decompositions of 
these materials. 

6. Decomposition of nitramine energetic materials and model systems. 

In order to elucidate the difference between nitramine energetic materials, such as 
RDX '(l,3,S-trinitro-1,3,S-triazacyclohexane), HMX (l,3,S,7-tetranitro-1,3,S,7-
tetraazacyclooctane), and CL-20 (2,4,6,8,10,12-hexanitro-2,4,6,8,10,12-
hexaazaisowurtzitane), and their nonenergetic model systems, including 1,4-
dinitropiperazine, nitropiperidine, nitropyrrolidine, and dimethylnitramine, both 
nanosecond mass resolved excitation spectroscopy and femtosecond pump-probe 
spectroscopy in the UV spectral region have been employed to investigate the 
mechanisms and dynamics of the excited electronic state photodissociation of these 
materials. The NO molecule is an initial decomposition product of all systems. The 
NO molecule from the decomposition of energetic materials displays cold rotational 
and hot vibrational spectral structures. Conversely, the NO molecule from the 
decomposition of model systems shows relatively hot rotational and cold 
vibrational spectra. In addition, the intensity of the NO ion signal from energetic 
materials is proportional to the number of nitramine functional groups in the 
molecule. Based upon experimental observations and theoretical calculations of the 
potential energy surface for these systems, we suggest that energetic materials 
dissociate from ground electronic states after internal conversion from their first 
excited states, and model systems dissociate from their first excited states. In both 
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cases a nitro-nitrite isomerization is suggested to be part of the decomposition 
mechanism. Parent ions of dimethylnitramine and nitropyrrolidine are observed in 
femtosecond experiments. All the other molecules generate NO as a decomposition 
product even in the femtosecond time regime. The dynamics of the formation of the 
NO product is faster than 180 fs, which is equivalent to the time duration of our 
laser pulse. 

7. Nonadiabatic Reaction of Energetic Molecules 

Energetic materials are systems that store a large amount of chemical energy that 
can be readily converted into mechanical energy via decomposition. Excited 
electronic state decomposition of energetic materials can be initiated by a number 
of different ignition processes, such as sparks, shocks, heat, or arcs: experimentally, 
excited electronic state decomposition has been proved to play an essential role in 
the energy conversion process. In order to understand the mechanisms for the 
decomposition of energetic materials from excited electronic states fully, 
investigation and analysis of the specific topography of the excited electronic 
potential energy surfaces (PESs) of these molecules are necessary. Conical 
intersections (CIs), which create a funnel-like topography of PESs due to the 
crossing of multidimensional electronic PESs, have been firmly established to be a 
controlling factor in the excited electronic state decomposition of polyatomic 
molecules. A decomposition process involving CIs is an electronically nonadiabatic 
mechanism, because of the involvement of more than one PES. Based on our 
experimental observations and theoretical calculations, we find that nonadiabatic 
reaction through CIs dominates the initial decomposition process of energetic 
materials from excited electronic states. Although the nonadiabatic behavior of 
some polyatomic molecules has been well studied, the role of nonadiabatic reactions 
in the decomposition of excited electronic state energetic molecules has not been 
well investigated. Nonadiabatic unimolecular chemistry of energetic materials 
through CIs, supports the essential role of CI in the determination of decomposition 
pathways of these energetic systems. Both nanosecond energy resolved, and 
femtosecond time resolved, spectroscopic techniques are utilized to determine 
experimentally the decomposition mechanism and dynamics of energetic species. 
Subsequently, multiconfigurational methodologies (such as, CASSCF, CASMP2) are 
employed to model nonadiabatic molecular processes of energetic molecules. 
Synergism between experiment and theory establishes a coherent description of the 
nonadiabatic reactivity of energetic materials at a molecular level. A number of 
model systems, which have similar molecular structures to those of the energetic 
systems, but are themselves non-energetic, are first studied in detail to assist in 
understanding the nonadiabatic behavior of a specific moiety in an energetic 
system. Then, the decomposition mechanisms for more complex energetic systems 
are studied and compared with those of their model systems. Our results for the 
systems of interest confirm that the existence of CIs and the energy barriers for 
accessing them on the PESs of interest control the nonadiabatic behavior of the 
decomposition process. The detailed nature of the PESs and their CIs consequently 
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differentiate the energetic systems from model systems. Energy barriers to the 
chemically relevant low-lying CI of a molecule are determining factors for that 
molecule being more or less "energetic". 

8. Photodissociation Dynamics of Nitromethane at 226 and 271 nm at Both 
Nanosecond and Femtosecond Time Scales 

Photodissociation of nitromethane has been investigated for decades both 
theoretically and experimentally; however, as a whole picture, the dissociation 
dynamics for nitromethane are still not clear, although many different mechanisms 
have been proposed. To make a complete interpretation of these different 
mechanisms, photolysis of nitromethane at 226 and 271 nm under both collisional 
and collisionless conditions is investigated at nanosecond and femtosecond time 
scales. These two laser wavelengths correspond to the rr* - rr and rr*- m 
excitations of nitromethane, respectively. In nanosecond 226 nm (rr*- rr) photolysis 
experiments, CH3 and NO radicals are observed as major products employing 
resonance enhanced multi photon ionization techniques and time-of-flight mass 
spectrometry. Additionally, OH and CH30 radicals are weakly observed as 
dissociation products employing laser induced fluorescence spectroscopy; the CH30 
product is only observed under collisional conditions. In femtosecond 226 nm 
experiments, CH3, N02, and NO products are observed. These results confirm that 
rupture of C-N bond should be the main primary process for the photolysis of 
nitromethane after the rr* - rr excitation at 226 nm, and the N02 molecule should 
be the precursor of the obs~rved NO product. Formation of the CH30 radical after 
the recombination of CH3 and N02 species under collisional conditions rules out a 
nitro-nitrite isomerization mechanism for the generation of CH30 and NO from rr*
Jr CH3N02. The OH radical formation for rr*- rr CH3N02 should be a minor 
dissociation channel because of the weak OH signal in both nanosecond and 
femtosecond (nonobservable) experiments. Single color femtosecond pump-probe 
experiments at 226 nm are also employed to monitor the dynamics of the 
dissociation of nitromethane after the rr*- rr excitation. Because of the ultrafast 
dynamics of product formation at 226 nm, the pump-probe transients for the three 
dissociation products are measured as an autocorrelation of the laser pulse, 
indicating the dissociation of nitromethane in the rr*- rr excited state is faster than 
the laser pulse duration (180 fs). In nanosecond 271 nm (rr*- n) photolysis 
experiments, pump-probe experiments are performed to detect potential 
dissociation products, such as CH3, N02, CH30, and OH; however, none of them are 
observed. In femtosecond 271 nm laser experiments, the nitromethane parent ion is 
observed with major intensity, together with CH3, N02, and NO fragment ions with 
only minor intensities. Pump-probe transients for both nitromethane parent and 
fragment ions at 271 nm excitation and 406.5 nm ionization display a fast 
exponential decay with a constant time of 36 fs, which we suggest to be the lifetime 
of the excited nrr* state of nitromethane. Combined with the 271 nm nanosecond 
pump-probe experiments, in which none of the CH3, N02, CH30, or OH fragments is 
observed, we suggest that all the fragment ions generated in 271 nm femtosecond 
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laser experiments are derived from the parent ion, and dissociation of nitro methane 
from the nrr* excited electronic state does not occur in a supersonic molecular beam 
under collisionless conditions. 
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